Select Page

Stanford Professor Robert Sapolsky, posits that depression is the most damaging disease that you can experience. Right now it is the number four cause of disability in the US and it is becoming more common. Sapolsky states that depression is as real of a biological disease as is diabetes. Stanford University: www.stanford.edu Stanford University Channel on YouTube

More Depression Research from Stanford University Professor Robert Sapolsky

Robert Sapolsky Depression NeurologyStress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine.

Stress-induced structural remodeling in the adult hippocampus, involving debranching and shortening of dendrites and suppression of neurogenesis, provides a cellular basis for understanding the impairment of neural plasticity in the human hippocampus in depressive illness. Accordingly, reversal of structural remodeling may be a desirable goal for antidepressant therapy.

The present study investigated the effect of tianeptine, a modified tricyclic antidepressant, in the chronic psychosocial stress model of adult male tree shrews (Tupaia belangeri), a model with high validity for research on the pathophysiology of major depression. Animals were subjected to a 7-day period of psychosocial stress to elicit stress-induced endocrine and central nervous alterations before the onset of daily oral administration of tianeptine (50 mg/kg).

The psychosocial stress continued throughout the treatment period of 28 days. Brain metabolite concentrations were determined in vivo by proton magnetic resonance spectroscopy, cell proliferation in the dentate gyrus was quantified by using BrdUrd immunohistochemistry, and hippocampal volume was measured post mortem.

Chronic psychosocial stress significantly decreased in vivo concentrations of N-acetyl-aspartate (-13%), creatine and phosphocreatine (-15%), and choline-containing compounds (-13%). The proliferation rate of the granule precursor cells in the dentate gyrus was reduced (-33%). These stress effects were prevented by the simultaneous administration of tianeptine yielding normal values.

In stressed animals treated with tianeptine, hippocampal volume increased above the small decrease produced by stress alone. These findings provide a cellular and neurochemical basis for evaluating antidepressant treatments with regard to possible reversal of structural changes in brain that have been reported in depressive disorders.

[sc name=”Depression”]